Blog

Chapter 5 – Optical axis definition

Chapter 5 – Optical axis definition The purpose of optical alignment is making the optical axis of an optical element, or complete system,coaxial with some other axis that is defined by other optical or mechanical components. This means wemust start the discussion of optical alignment by making sure we all mean the same thing when […]

Chapter 4 -Autostigmatic microscope

Chapter 4 -Autostigmatic microscope There is no better way to describe an autostigmatic microscope (ASM) than to call it an autocollimator(AC) with a microscope objective attached to the front. This converts the AC from an instrument thatmeasures 2 angular degrees of freedom (DOF) into an instrument that measures the location of thecenter of curvature of […]

Chapter 3 – Classical optical alignment instruments

Classical optical alignment instruments – Chapter 3 The most basic optical instrument used for alignment and testing of optics is a collimator, an instrumentdesigned to produce a parallel beam of rays, or a plane wavefront, from a point source of light. Turningwords into hardware we have something like Fig. 1 where a single mode optical […]

Chapter 2 – Three methods of alignment

Three methods of alignmentIn the Introduction to this series of articles on optical alignment, I said there were three basic methodsof alignment. This article presents my thoughts on these methods. My approach may be a bitunconventional, but I hope this way of beginning makes the whole idea of alignment easier tounderstand. To illustrate the three […]

Chapter 1 – Introduction

Introduction to a series of articles on optical alignmentFor some time, I have been encouraged to write a book about optical alignment. There have beenseveral halfhearted attempts at beginning, but it never seemed there was enough to talk about and Ikept finding new ideas about alignment. I didn’t want the book to be out of […]

Chapter 21 – Bessel Beam Alignment of a Single Lense

Introduction: In Chapters 14 and 15 I explained how a Bessel beam is used to align optics when you have all the necessary degrees of freedom to fully align the optics in tilt, decenter and focus. Many times, you have physical constraints due to the hardware the optics are installed in, so you don’t have […]

Chapter 20: Aligning Off-Axis Parabolas with a Bessel Beam — It’s Much Easier

Introduction In Chapter 18, I described aligning off-axis parabolas (OAPs) by placing the focus of a test instrument at the OAP’s focus and autoreflecting off a plane mirror. Although I suggested some tips to ease the process, the initial alignment—getting the reflected light back into the test device’s objective—remains challenging. Because I’ve found that using […]

Chapter 19 – Microscope Objective to Tube Lens Alignment

The subject of this Chapter is prompted by several questions over the last couple of months concerning the alignment of tube lenses to high power microscope objectives. In most microscopes these days the objectives are designed as finite to infinite conjugate optics so there is a need for a “tube” lens to focus the object […]

Chapter 18 – Alignment of Off-Axis Parabolas

Although this is a chapter on off-axis parabolas (OAPs), I want to start with one more way of testing symmetric parabolas because it illustrates a point about off-axis alignment. Assume we have a symmetric parabola with no central hole and we want to minimize the obstruction due to testing. If we set the parabola up […]

Chapter 17 – Alignment of Symmetric Parabolas

I often receive requests for assistance with aligning parabolic mirrors, particularly off-axis ones. Interestingly, with the right tools, the actual alignment process is often quicker than mounting the optical alignment equipment. This observation led me to reflect on the tools themselves. Currently, no traditional method—whether using an autocollimator or an alignment telescope—provides an effective way […]

Chapter 16 – Footnote for Chapters 14 and 15

This brief chapter serves as a vital addendum to the last two chapters. While I’ve already described the alignment process, I realized I hadn’t emphasized how remarkably simple it is—and what makes it so effortless. Over the years, countless methods have been used to align optics successfully, long before Bessel beams entered the picture. What […]

Chapter 15: Tabletop Alignment Part 2

In Chapter 14, we showed how to determine the axis of a laser beam to which we want to align optical elements and then how to align a Bessel beam to the laser beam axis. This Chapter shows the steps to align optical elements to the reference Bessel beam. With tabletop alignment, you have all […]

Chapter 14: Tabletop Alignment Part 1

At last, I am back to writing more about optical alignment. The hiatus was due to my realization that most readers are not interested in assembling lenses in a tube. Rather, they want to align free-standing optics on tabletops or benches in labs researching topics like laser light interactions with matter, free-space communication, and quantum […]

Chapter 13: New Optical Alignment Tools

In Chapter 12, I commented again on classical optical instruments since there was interest in an earlier discussion. This got me thinking about what had changed in optical technology since the period ending about 1950 when there was a rather canonical set of classical optical metrology tools. There has been a huge technological change since […]

Chapter 12: Further Comments on Classical Optical Instruments

There was more interest in Chapter 3 about the classical instruments used for optical alignment than any other chapter to date, and I didn’t have a chance to say all I wanted to, so I will continue the discussion in this Chapter to emphasize how changes in technology have changed the design of these instruments. […]

Chapter 11: Alignment and Precision Engineering

As I said in the first chapter, I hope to make these articles into a book on alignment after significant editing to organize the material coherently. In that spirit, and before I forget, let me discuss some aspects of alignment and precision engineering that belong in a Preface or Introduction to the book rather than […]

Chapter 10: Index of Refraction and Lens Conjugates        

This Chapter is a little out of order but illuminates a topic we have hinted at in previous Chapters, how does the index of refraction affect the lens conjugates we see when doing centration? The immediate interest came from a call I got because some glass apparently got mixed up in a batch of identical […]

What is an Autostigmatic Microscope (ASM) and the Origin of the Point Source Microscope (PSM)

When most people think of a microscope it is one that works in transmission with the light source on one side of the sample and the microscope objective and eyepiece on the other. An autostigmatic microscope (ASM) works in reflection, just like an autocollimator, so the light source is in the microscope body, and is […]

Physical Ray Tracing with Bessel Beams

Robert E. ParksOptical Perspectives Group, LLC Tucson, AZ 85750 Daewook KimJ. C. Wyant College of Optical Sciences The University of Arizona Tucson, AZ 75721 INTRODUCTION Following the discovery of so called non- diffracting Bessel beams [1], they have been used for a number of exotic purposes such as trapping single atoms and aiding in the […]

Optical alignment using the Point Source Microscope

Robert E. Parks and William P. KuhnOptical Perspectives Group, LLC, 9181 E. Ocotillo Drive, Tucson, AZ 85749 ABSTRACT We give an example of a Point Source Microscope (PSM) and describe its uses as an aid in the alignment of optical systems including the referencing of optical to mechanical datums. The PSM is a small package […]
Worldwide Representatives

USA

 Innovations Foresight
4432 Mallard Point,
Columbus, IN 47201 USA
Telephone:
1-215-884-1101

Contact:
Customerservice@innovationsforesight.com

USA/INTERNATIONAL

UK & EU

Armstrong Optical
+44(0) 1604 654220
info@armstrongoptical.co.uk

All Asian Countries Except China

清 原 耕 輔   Kosuke Kiyohara
清原光学 営業部   Kiyohara Optics / Sales
+81-3-5918-8501
opg-sales@koptic.co.jp

Kiyohara Optics Inc.
3-28-10 Funado Itabashi-Ku Tokyo, Japan 174-0041

China


Langxin (Suzhou) Precision Optics Co., Ltd
1st floor, Building 10, Yisu Science and Technology Innovation Park, 100 meters west of the intersection of Xinhua Road and Weimeng Road, Kunshan City, Suzhou City, Jiangsu Province, 215345

Telephone: +860512-57284008
Contact: Wang Zengkun
+8617090133615
wangzengkun@langxinoptics.com

Australia & New Zealand

Mersenne Optical Consulting
aprakich@gmail.com

India


Fiber Optic Services
Joshi Pravin: Info@foservice.com

Optical Perspectives Group, LLC

Copyright ©
Website by CS Design Studios
Headquarters: 7011 E Calle Tolosa, Tucson, AZ 85750
Laboratory: 1661 S Research Loop, Tucson, AZ 85710