Published Papers
Optical Alignment Using a CGH and an Autostigmatic Microscope
We show how custom computer generated holograms (CGH) are used along with an autostigmatic microscope (ASM) to align both optical and mechanical components relative to the CGH. The patterns in the CGHs define points and lines in space when interrogated with the focus of the ASM. Once the ASM is aligned to the CGH, an optical or mechanical component such as a lens, a well-polished ball or a cylinder can be aligned to the ASM in 3 or 4 degrees of freedom and thus to the CGH. In this case we show how a CGH is used to make a fixture for cementing a doublet lens without the need for a rotary table or a precision vertical stage.
New Approach to Optical Assembly and Cementing
A novel method of projecting a reference axis in space for use in optical assembly of centered elements such as assembly in a barrel or in cementing multi-element lenses is presented. An axicon grating, a set of concentric, uniformly spaced circles, when illuminated with a point source of light creates a line of bright spots surrounded by concentric rings in both transmission through and reflection from the grating. This axis is easily interrogated with an autostigmatic microscope to gauge the distance a center of curvature, or other lens conjugate, lies from the axis created by the grating.
Evaluating SMR Positioning with an Autostigmatic Microscope
An optical method of determining the location of the apex of a corner reflector mounted in a steel ball, commonly referred to as a Spherically Mounted Retroreflector (SMR), relative to the center of the ball to the 1-2 μm level was previously described by us. The method used an autostigmatic microscope focused on the apex and viewed the reflected spot image as the SMR was rotated about a normal to its entrance aperture. This measurement determined the lateral offset of the apex and tipping the SMR while viewing the spot gave an indication of the axial displacement.
Alignment Using Axicon Plane Gratings
Axicon gratings are computer generated holograms of equally spaced concentric circles printed on a plane substrate. When illuminated by a point source of light they create axes in space defined by a line between the point source and the center of the grating pattern. The axis can be viewed in either transmission or reflection with an autostigmatic microscope. The axis created by the grating can be located to less than 1 um in translation and depending on distance from the grating to less than 1 microradian in angle. Several examples of such a use in alignment are explained.
Computer Generated Holograms As 3-Dimensional Calibration Artifacts
The positioning accuracy of multi-axis machine tools and coordinate measuring machines are often checked using ball bars or ball plates where the spatial locations of the balls are externally calibrated to provide a traceable artifact [1,2]. In use, the individual ball surfaces are probed in at least 4 places with a tactile sensor and the points of contact fit to the equation of a sphere to determine the center of the ball. The method is tedious, indirect and semi-static. Furthermore, it is difficult or impossible to create artifacts that truly span the three-dimensional work volume of machines because some features become occluded by others and cannot be accessed.
Chapter 16 – Footnote for Chapters 14 and 15
This brief chapter serves as a vital addendum to the last two chapters. While I’ve already described the alignment process, I realized I hadn’t emphasized how remarkably simple it is—and what makes it so effortless. Over the years, countless methods have been used to align optics successfully, long before Bessel beams entered the picture. What […]
Recent Posts
- Chapter 23 Alignment of Convex Surfaces
- Chapter 22 – Simulation of the alignment of a Cooke triplet using a Bessel beam reference
- Chapter 21 – Bessel Beam Alignment of a Single Lense
- Chapter 20: Aligning Off-Axis Parabolas with a Bessel Beam — It’s Much Easier
- Chapter 19 – Microscope Objective to Tube Lens Alignment