Published Papers
Using Image Symmetries to Uniquely Align Aspheric Mirrors to a Focus and Axis
The Point Source Microscope (PSM) is used to find five aberrations related to the symmetries of the autostigmatic image viewed when aligning aspheric mirrors to a point along an axis. These five aberrations exactly match in number the five degrees of mechanical freedom required to align the mirror to an axis and thus provide an exact solution to a unique focus and alignment to an axis. We show how the PSM is used to capture and analyze a set of images as the PSM is moved through focus using the symmetry properties of the image.
Optical Ball Center Finder for Use in the R-Test
We present a description of an attachment for an autostigmatic microscope that uses two objectives set at right angles to unambiguously locate the center of a ball in all 3 translational degrees of freedom that can be used to perform the “R” test, or to scan a ball plate, to determine machine tool precision dynamically.
Optical Alignment Using a CGH and an Autostigmatic Microscope
We show how custom computer generated holograms (CGH) are used along with an autostigmatic microscope (ASM) to align both optical and mechanical components relative to the CGH. The patterns in the CGHs define points and lines in space when interrogated with the focus of the ASM. Once the ASM is aligned to the CGH, an optical or mechanical component such as a lens, a well-polished ball or a cylinder can be aligned to the ASM in 3 or 4 degrees of freedom and thus to the CGH. In this case we show how a CGH is used to make a fixture for cementing a doublet lens without the need for a rotary table or a precision vertical stage.
New Approach to Optical Assembly and Cementing
A novel method of projecting a reference axis in space for use in optical assembly of centered elements such as assembly in a barrel or in cementing multi-element lenses is presented. An axicon grating, a set of concentric, uniformly spaced circles, when illuminated with a point source of light creates a line of bright spots surrounded by concentric rings in both transmission through and reflection from the grating. This axis is easily interrogated with an autostigmatic microscope to gauge the distance a center of curvature, or other lens conjugate, lies from the axis created by the grating.
Evaluating SMR Positioning with an Autostigmatic Microscope
An optical method of determining the location of the apex of a corner reflector mounted in a steel ball, commonly referred to as a Spherically Mounted Retroreflector (SMR), relative to the center of the ball to the 1-2 μm level was previously described by us. The method used an autostigmatic microscope focused on the apex and viewed the reflected spot image as the SMR was rotated about a normal to its entrance aperture. This measurement determined the lateral offset of the apex and tipping the SMR while viewing the spot gave an indication of the axial displacement.
Alignment Using Axicon Plane Gratings
Axicon gratings are computer generated holograms of equally spaced concentric circles printed on a plane substrate. When illuminated by a point source of light they create axes in space defined by a line between the point source and the center of the grating pattern. The axis can be viewed in either transmission or reflection with an autostigmatic microscope. The axis created by the grating can be located to less than 1 um in translation and depending on distance from the grating to less than 1 microradian in angle. Several examples of such a use in alignment are explained.
Recent Posts
- Simulation for Design For Manufacture (DFM) and tolerancing of realistic optical surface scatter for Mid-spatial Frequencies (MSF) and beyond
- Ritchey-Common Test & Similar Methods Using AI Image Space Phase Retrieval
- Chapter 23 Alignment of Convex Surfaces
- Chapter 22 – Simulation of the alignment of a Cooke triplet using a Bessel beam reference
- Chapter 21 – Bessel Beam Alignment of a Single Lense