

Reverse engineering lens elements

Robert E. Parks Room 106A 621-4180 reparks@optiper.com

Introduction

- Need for reverse engineering
- Properties necessary for reverse engineering
- How to make necessary measurements
- How to calculate the paraxial properties
- Use of a spreadsheet for the solution
- Use of a lens design program to find a solution

Need for reverse engineering

- Actually want to copy someone's design
- Concern that lens may be wrong glass
- Lenses got mixed up, need to sort out
- Lens system does not work right elements?

Properties needed to reverse engineer

- Just looking for paraxial properties
 - These are the properties on an optical drawing
- Two radii
- Glass type or index at the measurement wavelength
- Center thickness
 - Could measure physically, but may not want to, or can't

Measurements needed

- Radius of curvature but may not have working distance – reverse lens so backside concave
- Optical center thickness to rear vertex
- Back focal length from one or both sides
- Need at least 4 measurements to solve for 4 unknowns
- Extra measurements increase confidence

Measurements that can be made

Center thickness

$$t_{O} = \frac{y_{1}}{u_{1}} = \frac{-tR_{1}}{nR_{1} + t(n-1)}$$

7

Back focal length

9

No closed form solution for unknowns

- Use spreadsheet
 - Find difference between measured & guessed values
 - Square differences and sum
 - Make sum zero by varying unknowns
- Use a lens design program
 - Model the various measurement configurations
 - Use multi-configuration option
 - Use plane surfaces, guess thickness and a model for index
 - Use optimizer to find solution

Spreadsheet example

		measured	difference	difference^2
n, known or best estimate	1.45099			
t, known or best estimate	2.706816			
r1, known if shorter than working distance	2.237	2.237	0	0
r2, known or best estimate	-3.51362			
c1 = 1/R1, used in the calculation	0.447027			
a, optical center thickness based on	2.990021	2.99	-2.1E-05	4.5377E-10
known or estimated parameters				
b, R2 center of curvature based on	-0.49999	-0.5	-1.1E-05	1.25782E-10
known or estimated parameters				
d, BFL based on	-2.70001	-2.7	9.02E-06	8.13664E-11
known or estimated parameters				
a, b and d are all relative to vertex of R1		sum of squ	6.60918E-10	

N, t and r_2 were estimated and a, b and c calculated

Solver used to minimize lower right hand cell to give calculated n, t and r_2 shown above.

Surf:Type		Comment	Radius		Thickness		Glass		Semi-Diameter	
OBJ	Standard		Infinity		Infinity				0.00000	
1	Paraxial				100.000000				12.700000 U	
2	Standard	variable distance	Infinity		99.561047	۷			0.00000	
STO*	Standard	R1	60.020000		4.000000		BK7		12.700000 U	
4	Standard	R2 config 2 & 3	-353.300000		-4.00000	P	MIRROR		0.000000	
5*	Standard	R2 config 1	-353.300000		10.00000				12.700000 U	
6*	Standard	mirror	Infinity		-10.000000	Ρ	MIRROR		12.700000 U	
7*	Standard	R2	-353.300000	P	-4.000000	P	BK7	P	12.700000 U	
8*	Standard	R1	60.020000	Р	-99.561047	Р			12.700000 U	
9*	Standard	R1 rev	353.300000	Ρ	4.00000	Ρ	BK7	Ρ	12.700000 U	
10*	Standard	R2 rev config 2,3	-60.020000	Ρ	-4.00000	Ρ	MIRROR	Ρ	12.700000 U	
11*	Standard	R2 rev config 1	-60.020000	Р	10.00000				12.700000 U	
12*	Standard	mirror	Infinity		-10.00000	P	MIRROR	Ρ	12.700000 U	
13*	Standard	R2 rev	-60.020000	Ρ	-4.00000	Ρ	BK7	P	12.700000 U	
14*	Standard	R1 rev	353.300000	Р	2.650440	Р			12.700000 U	
15	Standard		Infinity		-100.000000	P			12.700000 U	
16	Paraxial	paraxial			0.00000				12.700000 U	
17	Paraxial				-100.000000				12.700000 U	
IMA	Standard		Infinity		_				0.083519	

Lens design example

Configuration 1 shown for calculation of bfl

Grayed out lines are ignored

Lens design example con't 1

Edit S	Solves	Tools View I	Help									
Active : 1/6 Config		Config 1*	Config 2	Config 3		Config 4		Config 5		Config 6		
1: MOFF	0	BFL	R2	CT		BFL		R2		CT		
2: THIC	2	99.561047 V	77.411271	7 -2.701440	V	97.681577	v	35.085383	v	-2.650440 V		
3: IGNR	3	0	0	0		1		1		1		
4: IGNR	4	1	0	0		1		1		1		
5: IGNR	5	0	1	1		1		1		1		
6: IGNR	6	0	1	1		1		1		1		
7: IGNR	7	0	1	1		1		1		1		
8: IGNR	8	0	0	0		1		1		1		
9: IGNR	9	1	1	1		0		0		0		
10: IGNR	10	1	1	1		1		0		0		
11: IGNR	11	1	1	1		0		1		1		
12: IGNR	12	1	1	1		0		1		1		

Configurations 1, 2 and 3 are looking thru short radius first

Configurations 4,5 and 6 are looking thru long radius first

Line 2 shows what the measurements should be knowing the index, thickness and two radii

Lens design example con't 2

Lens design example con't 3

	Surf:Type	Comment	Radius	Radius			Glass		Semi-Diameter		
OBJ	Standard		Infinity		Infinity				0.00000		
1	Paraxial				100.000000				12.700000	U	
2	Standard	variable distance	Infinity		99.561047				0.00000		
STO*	Standard	R1	60.020000	v	4.00000	v	1.52,64.2		12.700000	U	
4	Standard	R2 config 2 & 3	-353.300000		-4.00000	Ρ	MIRROR		0.00000		
5*	Standard	R2 config 1	-353.300000	v	10.00000				12.700000	U	
6*	Standard	mirror	Infinity		-10.000000	P	MIRROR		12.700000	U	
7*	Standard	R2	-353.300000	P	-4.000000	P	1.52,64.2	Ρ	12.700000	U	
8*	Standard	R1	60.020000	Ρ	-99.561047	Ρ			12.700000	U	
9*	Standard	R1 rev	353.300000	Ρ	4.00000	Ρ	1.00,0.0	Ρ	12.700000	U	
10*	Standard	R2 rev config 2,3	-60.020000	Ρ	-4.00000	Ρ	MIRROR	Ρ	12.700000	U	
11*	Standard	R2 rev config 1	-60.020000	Ρ	10.00000				12.700000	U	
12*	Standard	mirror	Infinity		-10.00000	Ρ	MIRROR	P	12.700000	U	
13*	Standard	R2 rev	-60.020000	Ρ	-4.00000	Ρ	1.00,0.0	Р	12.700000	U	
14*	Standard	R1 rev	353.300000	Ρ	2.650440	Ρ			12.700000	U	
15	Standard		Infinity		-100.000000	P			12.700000	U	
16	Paraxial	paraxial			0.00000				12.700000	U	
17	Paraxial				-100.000000				12.700000	U	
IMA	Standard		Infinity		-				0.083542		

Radii, thickness and index are set as variables

Optimized with small entrance pupil for paraxial solution

Conclusions

- Use all practical conjugate measurements in model
- Works with interferometer or autostigmatic microscope
- Works for doublets as well as singlets
 - Can usually see cement interface
 - Often better reflection than AR coated surfaces
 - Just a more complicated lens design model
- Need to know surfaces from centers of curvature
- Remember to stop down model before optimization
 - Model must find first order solution
- All in all, pretty easy to do