
A Practical implementation of the Random Ball Test 
 

The random ball test for calibrating interferometer transmission spheres1 was reported about 8 
years ago but there did not appear to be an ideal ball. Now, nearly ideal balls are available. 
 
Although the idea must have been around for years the use of a ball for the calibration of 
interferometer transmissions spheres was, to our knowledge first reported in 1999. The ball used 
at the time was made of black (neutral density filter) glass and worked fine for a demonstration 
of the principle but was not really practical because of its relative softness of the glass and 
susceptibility to damage in everyday use.    
 
Other ball artifacts were tried without great success. High grade chrome steel balls are quite 
round but are easily dented and have a high reflectivity that is not a good match for an uncoated 
transmission sphere. The chrome steel also has an affinity for fingerprints and tends to corrode 
due to them just enough to roughen the surface. Zerodur or other transparent glass balls do not 
work because of a reflection off the concave surface as well as the convex. This problem can be 
solved by drilling half way through the ball but this leaves a defect in the surface. Most forms of 
ceramic balls have a poor surface finish because they are made by a sintering process that does 
not yield fine grain sizes. Silicon balls are another possibility but the regular crystal structure of 
the material makes it difficult to make truly round balls. 
 
Relatively recently we found silicon nitride balls2 that overcome these objections. Balls in 25 
mm sizes are Grade 5, meaning round to better than 5 microinches (125 nm), have a surface 
finish of about 1.3 nm rms, are opaque, have a reflectivity of about 11% in the visible and are 
virtually indestructible. These qualities make the silicon nitride balls a practical answer to a test 
artifact that can be used repeatedly in a calibration situation for years without fear of 
degradation. 
 
At this point it pays to review the random ball test.  A ball of about 25 mm in diameter is located 
so that its center is precisely at the transmission sphere focus as shown in Fig. 1. The ball should 
be centered well enough that no more than one fringe is seen in the aperture. An interferogram is 
taken and the wavefront data stored after removing tip, tilt and focus. The ball is picked up, 
rotated so that an arbitrary new patch of the surface is viewed by the transmission sphere, 
carefully re-centered and another interferogram taken. When a series of interferograms have 
been taken they are averaged and the average is a close approximation of the residual errors in 
the transmission sphere. 
 
 
 
 
 
 
 

Fig. 1 Calibration ball sitting on a three point kinematic mount with the green cone representing the light from the 
transmission sphere focused at the center of the ball. The ball acts like a convex mirror and directs the light back 

into the interferometer over the same path that it exited.  
 



To show that the average of the interferograms of the ball represent a statistical approximation of 
the errors in the transmission sphere we follow the logic of Creath and Wyant3 in a paper on 
calibrating surface finish measuring interferometers. They argue that if a smooth plane mirror is 
sampled in non-overlapping regions the topography of those regions is uncorrelated and 
independent. Therefore the measured rms error is the root sum square of the rms of the mirror 
plus the rms of the Mirau objective and reference mirror in the objective used to make the 
measurement. Similarly we argue that the rms of the interferogram of the calibration ball is the 
root sum square of the rms of the errors in the ball plus the rms errors in the transmission sphere 
because different patches of the ball are uncorrelated and independent. 
 
In other words, 
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where erferogramintσ  is the rms of any one interferogram, σball is the rms of the patch of the ball 
being measured and σTS is the rms error in the transmission sphere.  
 
The rms error in the knowledge of the wavefront error of the transmission sphere found using the 
random ball test is the rms error in the patches of the ball divided by the square root of the 
number of interferograms averaged, Creath and Wyant eq. (11), or 
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Finally, to find the rms error in the ball patches being measured, again following their logic, we 
can difference any two interferograms to give σdiff. Since the statistics of any two ball patches is 
the same the rms error of the patches should be the same. Therefore, 
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Results of some typical measurements using an f/3.3 transmission sphere showed the rms 
difference between two measurements to be about 4.4 nm which means the rms figure of the ball 
over the patch viewed to be about 3.1 nm rms. Then the question becomes how many 
interferograms should be averaged to reduce the error in knowing the wavefront of the 
transmission sphere? In a paper by Ulf Griesmann4 he suggests that the error be less than the 
repeatability of the measurement where the ball is not moved.  
 
We found that during our test the repeatability was about 1.65 nm rms. This suggests that the 
error in knowing the transmission sphere wavefront is reduced to less than the repeatability of 
the test when four or more interferograms are averaged in our test environment using an f/3.3 
diverger. Clearly the result will be different for every set of test conditions. On the other hand, 
this analysis offers a straightforward method of establishing the errors associated with 
performing the random ball calibration. It also shows that ultimately the calibration is 



independent of the figure of the ball, it just takes far fewer interferograms in the average if the 
figure and finish of the ball are good. 
 
To illustrate these results Fig. 2 shows the four wavefront maps of individual tests with tip, tilt 
and power removed along with the p-v and rms of each. Fig. 3 then shows the difference 
between the first two measurements in Fig. 3 to show a typical difference map and why the rms 
error in the ball is on the order of 3 nm. Fig. 4 is the average of the four interferograms in Fig. 2. 
Clearly the coherent error, that is, the result of the average is far greatly than any error in the ball. 
 
In conclusion we have shown that the random ball test is an easy to do calibration of 
transmission spheres that is independent of the quality of the ball but that a ball with good figure 
and finish makes the test quick to do. Further, the results of the test are difficult to argue with. 
There is one caveat; the test is susceptible to retrace errors if the f/number of the transmission 
sphere is too slow. Caution is advised for transmission spheres f/8 and slower. 
 

  
 

Fig. 2 Contour maps of the test of the random ball in four different test patches 
P-V ranges from .111 to .123 λ and rms from .016 to .019 λ 

 
 
 
 
 
 
 
 
 
 
 

Fig.3 The difference between the first two   Fig. 4 The average of the four contour 
 contour maps in Fig. 2    maps in Fig. 2, that is, the error in the  
        f/3.3 transmission sphere 
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